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Abstract. Contemporary workflow management systems are driven by explicit process models, i.e., a completely specified
workflow design is required in order to enact a given workflow process. Creating a workflow design is a complicated time-
consuming process and typically, there are discrepancies between the actual workflow processes and the processes as perceived
by the management. Therefore, we propose a technique for rediscovering workflow models. This technique uses workflow logs
to discover the workflow process as it is actually being executed. The workflow log contains information about events taking
place. We assume that these events are totally ordered and each event refers to one task being executed for a single case. This
information can easily be extracted from transactional information systems (e.g., Enterprise Resource Planning systems such as
SAP and Baan). The rediscovering technique proposed in this paper can deal with noise and can also be used to validate workflow
processes by uncovering and measuring the discrepancies between prescriptive models and actual process executions.
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1. Introduction

During the last decade workflow management con-
cepts and technology [2,19,23] have been applied in
many enterprise information systems. Workflow man-
agement systems such as Staffware, IBM MQSeries,
COSA, etc. offer generic modeling and enactment ca-
pabilities for structured business processes. By mak-
ing graphical process definitions, i.e., models describ-
ing the life-cycle of a typical case (workflow instance)
in isolation, one can configure these systems to sup-
port business processes. Besides pure workflow man-
agement systems, many other software systems have
adopted workflow technology. Consider for exam-
ple ERP (Enterprise Resource Planning) systems such
as SAP, PeopleSoft, Baan and Oracle, CRM (Cus-
tomer Relationship Management) software, etc. An-
other example is the field of web services. All web ser-
vices composition languages such BPEL4WS, BPML,
XLANG, WSFL, WSCI, etc. have adopted most work-
flow concepts. Despite its promise, many problems
are encountered when applying workflow technology.

As indicated by many authors, workflow management
systems are too restrictive and have problems dealing
with change [2,4,7,12,20]. Many workshops and spe-
cial issues of journals have been devoted to techniques
to make workflow management more flexible (e.g. [2,
4,20]). Most of the research in this area is devoted to
techniques to increase the flexibility either by allowing
for ad-hoc changes (as reflected by workflow manage-
ment systems such as InConcert [18]) or by providing
mechanisms to migrate cases and evolve workflows [7,
12].

In this paper we take a different perspective with
respect to the problems related to flexibility. We ar-
gue that many problems are resulting from a discrep-
ancy between workflowdesign (i.e., the construction
of predefined workflow models) and workflowenact-
ment (the actual execution of workflows). Workflow
designs are typically made by a small group of consul-
tants, managers and specialists. As a result, the initial
design of a workflow is often incomplete, subjective,
and at a too high level. During the implementation of
the workflow, i.e., configuring the workflow manage-

ISSN 1069-2509/03/$8.00 2003 – IOS Press. All rights reserved



www.manaraa.com

152 A.J.M.M. Weijters and W.M.P van der Aalst / Rediscovering workflow models from event-based data using little thumb

ment system and training the workers involved, these
issues cause many problems (“The devil is in the de-
tails”). Therefore, we propose to “reverse the process”.
Instead of starting with a workflow design, we start by
gathering information about the workflow processes as
they take place. We assume that it is possible to record
events such that (i) each event refers to a task (i.e., a
well-defined step in the workflow),(ii) each event refers
to a case (i.e., a workflow instance), and (iii) events are
totally ordered. Any information system using transac-
tional systems such as ERP, CRM, or workflow man-
agement systems will offer this information in some
form. Note that we do not assume the presence of a
workflow management system. The only assumption
we make, is that it is possible to construct workflow
logs with event data. These workflow logs are used
to construct a process specification, which adequately
models the behavior registered. We use the termpro-
cess mining for the method of distilling a structured
process description from a set of real executions. In this
paper, we propose a new technique for process mining.

The remainder of this paper is as follows. First we
discuss related work. Section 3 introduces some pre-
liminaries including a modeling language for workflow
processes and the definition of a workflow log. Then
we present a new technique for process mining (Sec-
tion 4) and the implementation of this technique in the
workflow-mining tool Little Thumb (Section 5). In
Section 6 we present our experimental results. Finally,
we conclude the paper by summarizing the main results
and pointing out future work.

2. Related work

The idea of process mining is not new [6,8–10,14–
17,21,22,24–26]. Cook and Wolf have investigated
similar issues in the context of software engineering
processes. In [8] they describe three methods for pro-
cess discovery: one using neural networks, one us-
ing a purely algorithmic approach, and one Marko-
vian approach. The authors consider the latter two
the most promising approaches. The purely algorith-
mic approach builds a finite state machine where states
are fused if their futures (in terms of possible behav-
ior in the nextk steps) are identical. The Markovian
approach uses a mixture of algorithmic and statistical
methods and is able to deal with noise. Note that the
results presented in [8] are limited to sequential behav-
ior. Cook and Wolf extend their work to concurrent
processes in [9]. They also propose specific metrics

(entropy, event type counts, periodicity, and causality)
and use these metrics to discover models out of event
streams. This approach is similar to the one presented
in this paper. However, our metrics are quite different
and our final goal is to find explicit representations for a
broad range of process models, i.e., we generate a con-
crete Petri net rather than a set of dependency relations
between events. In [10], Cook and Wolf provide a mea-
sure to quantify discrepancies between a process model
and the actual behavior as registered using event-based
data.

The idea of applying process mining in the context of
workflow management was first introduced in [6]. This
work is based on workflow graphs, which are inspired
by workflow products such as IBM MQSeries workflow
(formerly known as Flowmark) and InConcert. In this
paper, two problems are defined. The first problem is to
find a workflow graph generating events appearing in a
given workflow log. The second problem is to find the
definitions of edge conditions. A concrete algorithm
is given for tackling the first problem. The approach
is quite different from the approach presented in this
paper. Given the nature of workflow graphs there is
no need to identify the nature (AND or OR) of joins
and splits. Moreover, workflow graphs are acyclic.
The only way to deal with iteration is to enumerate all
occurrences of a given activity. In [22], a tool based on
these algorithms is presented.

Schimm [24] has developed a tool to discover hierar-
chically structured workflows. His approach requires
all splits and joins to be balanced.

Herbst and Karagiannis also address the issue of
process mining in the context of workflow manage-
ment [14–17]. The approach uses the ADONIS mod-
eling language and is based on hidden Markov models
where models are merged and split in order to discover
the underlying process. The work presented in [14,16,
17] is limited to sequential models. A notable differ-
ence with other approaches is that the same activity can
appear multiple times in the workflow model. The re-
sult in [15] incorporates concurrency but also assumes
that workflow logs contain explicit causal information.
The latter technique is similar to [6,22]and suffers from
the drawback that the nature of splits and joins (i.e.,
AND or OR) is not discovered.

Compared to existing work we focus on workflow
processes with concurrent behavior, i.e., detecting con-
currency is one of our prime concerns [25]. Therefore,
we want to distinguish AND/OR splits/joins explic-
itly. To reach this goal we combine techniques from
machine learning with WorkFlow nets (WF-nets [1]).
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Fig. 1. Example of a workflow process modeled as a Petri net.

WF-nets are a subset of Petri nets. Note that Petri nets
provide a graphical but formal language designed for
modeling concurrency. Moreover, the correspondence
between commercial workflow management systems
and WF-nets is well understood [1,2,13,19,23].

3. Preliminaries: Workflow nets and event logs

Workflows are by definitioncase-based, i.e., every
piece of work is executed for a specific case. Exam-
ples of cases are a mortgage, an insurance claim, a tax
declaration, an order, or a request for information. The
goal of workflow management is to handle cases as ef-
ficient and effective as possible. A workflow process is
designed to handle similar cases. Cases are handled by
executing tasks in a specific order. The workflow pro-
cess model specifies which tasks need to be executed
and in what order. Alternative terms for such a model
are: ‘procedure’, ‘workflow graph’, ‘flow diagram’ and
‘routing definition’. In the workflow process model,
routing elements are used to describe sequential, con-
ditional, parallel and iterative routing thus specifying
the appropriate route of a case [19,23]. Many cases can
be handled by following the same workflow process
definition. As a result, the same task has to be executed
for many cases.

Petri nets [11] have been proposed for modeling
workflow process definitions long before the term
“workflow management”’ was coined and workflow
management systems became readily available. Con-
sider for example Information Control Nets, a variant
of the classical Petri nets, already introduced in the
late seventies [13]. Petri nets constitute a good start-
ing point for a solid theoretical foundation of workflow
management. Clearly, a Petri net can be used to spec-
ify the routing of cases (workflow instances).Tasks
are modeled bytransitions, andplaces andarcs model
causal dependencies. As a working example we use
the Petri net shown in Fig. 1.

The transitionsT 1, T 2, . . ., T13 represent tasks, The
placesSb, P1, . . ., P10,Se represent the causal depen-
dencies. In fact, a place corresponds to a condition that
can be used as pre- and/or post-condition for tasks. An
AND-split corresponds to a transition with two or more
output places (fromT 2 to P2 andP3), and an AND-
join corresponds to a transition with two or more input
places (fromP8 andP9 to T 11). OR-splits/OR-joins
correspond to places with multiple outgoing/ingoing
arcs (fromP5 to T 6 andT 7, and fromT 7 andT 10
to P8). At any time, a place contains zero or more
tokens, drawn as black dots. Transitions are the active
components in a Petri net: they change the state of the
net according to the followingfiring rule:

step(1) A transitiont is said to beenabled if and
only if each input place oft contains at least
one token.

step(2) An enabled transition may fire. If transition
t fires, thent consumes one token from each
input placep of t and produces one token for
each output placep of t.

A Petri n]et that models the control-flow dimension
of a workflow is called a WorkFlow net (WF-net) [1].
A WF-net has one source place(Sb) and one sink place
(Se) because any case (workflow instance) handled
by the procedure represented by the WF-net is created
when it enters the workflow management system and
is deleted once it is completely handled, i.e., the WF-
net specifies the life-cycle of a case. An additional
requirement is that there should be no “dangling tasks
and/or conditions”, i.e., tasks and conditions which do
not contribute to the processing of cases. Therefore,
all the nodes of the workflow should be on some path
from source to sink.

The WF-net focuses on the process perspective and
abstracts from the functional, organization, informa-
tion and operation perspectives [19]. These perspec-
tives can be added using for example high-level Petri
nets, i.e., nets extended with color (data) and hierar-
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Fig. 2. The extracted D/F-graph based on heuristic rule 1.

chy. Although WF-nets are very simple, their expres-
sive power is impressive. In this paper we restrict our
self to so-called sound WF-nets [1]. A workflow net
is sound if the following requirements are satisfied:
(i) termination is guaranteed, (ii) upon termination, no
dangling references (tokens) are left behind, and (iii)
there are no dead tasks, i.e., it should be possible to
execute an arbitrary task by following the appropriate
route. Soundness is the minimal propertyany workflow
net should satisfy. Note that soundness implies the ab-
sence of livelocks and deadlocks. Sound WF-nets can
be used to model the basic constructs identified by the
Workflow Management Coalition [23] and used in con-
temporaryworkflow managementsystems. Experience
with leading workflow management systems such as
Staffware, COSA, MQSeries Workflow, etc. show that
it is fairly straightforward to express these tool-specific
languages in terms of the tool-independent language of
WF-nets. For an introduction to WF-nets the reader is
referred to [1].

In this paper, we useworkflow logs to discover work-
flow models expressed in terms of WF-nets. A work-
flow log is a sequence of events. An event is described
by a case identifier and a task identifier. An event
e = (c, t) corresponds to the execution of taskt for a
given case c. For reasons of simplicity, we assume that
there is just one workflow process. Note that this is
not a limitation since the case identifiers can be used
to split the workflow log into separate workflow logs
for each process. One workflow log may contain in-
formation about thousands of cases. Since there are no
causal dependencies between events corresponding to
different cases, we can project the workflow log onto a
separate event sequence for each case without loosing
any information. Therefore, we can consider a work-
flow log as a set of event sequences where each event
sequence is simply a sequence of task identifiers. An
example of an event sequence of the Petri net of Fig. 1

is given below:

T 1, T 2, T 4, T 3, T5, T9, T6, T3, T5, T10, T8,
T 11, T 12, T 2, T4, T 7, T3, T5, T8, T11, T13

Using the definitions for WF-nets and event logs we
can easily describe the problem addressed in this paper:
Given a workflow log we want to discover a WF-net
that (i) potentially generates as many event sequences
appearing in the log as possible, (ii) generates as few
event sequences not appearing in the log as possible,
(iii) captures concurrent behavior, and (iv) is as simple
and compact as possible. Moreover, to make our tech-
nique practical applicable we want to be able to deal
with noise.

4. A heuristic process mining technique

In this section, we present the details of our heuristic
process mining technique. In another paper [5], we
describe a moreformal approach and the so-calledα-
algorithm for which it is proven that it can successfully
rediscover a large class of practically relevant WF-nets.
Theα-algorithm is based on four ordering relation that
can be easily derived from a workflow log. LetA and
B be events andW a workflow log, then

(1) A > B if and only if there is a trace line in
W in which eventA is directly followed by
B,

(2) A → B if and only if A > B and not
B > A,

(3) A#B if and only if not A > B and not
B > A,

(4) A||B if and only if bothA > B andB > A.

TheA → B relation is the so-calleddependency re-
lation (B depends (directly) onA), A#B relation is the
so-callednon-parallel relation (i.e. there is no direct
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dependency between them and parallelism is unlikely),
andA||B relation is the so-calledparallel relation (it
indicates potential parallelism). In theα-algorithm the
dependency relation is used to connect events, the non-
parallel relation is used to detect the kinds of splits and
joins.

However, the formal approach presupposes perfect
information: (i) the log must be complete (i.e. if a task
can follow another task directly, the log should con-
tain an example of this behavior) and (ii) we assume
that there is no noise in the log (i.e. everything that is
registered in the log is correct). In practical situations,
logs are rarely complete and/or noise free. Therefore,
in practice it becomes more difficult to decide if two
events say A and B are in theA → B orA#B relation.
For instance the causality relation (A → B) between
two tasks A and B only holds if in the log there is a
trace in which A is directly followed by B (i.e. the re-
lationA > B holds) and there is no trace in which B is
directly followed by A (i.e. notB > A). However, in
a noisy situation one abusive example can completely
mess up the derivation of a right conclusion. For this
reason we try to developed heuristic mining techniques
which are less sensitive for noise and the incomplete-
ness of logs. Moreover, we try to conquer some other
limitations of theα-algorithm (short loops and some
Petri-net constructs). The remainder of this section is
used to present our heuristic mining techniques. In the
next section, we describe Little Thumb, a workflow-
mining tool based on the rules of thumb presented here.

In our heuristic mining approach we distinguish three
mining steps: Step (i) the construction of a depen-
dency/frequency table (D/F-table), Step (ii) the induc-
tion of a D/F-graph out of a D/F-table, and Step (iii)
the reconstruction of the WF-net out of the D/F-table
and the D/F graph.

4.1. Construction of the dependency/frequency table

The starting point of our workflow mining technique
is the construction of a D/F-table. For each taskA the
following information is abstracted out of the workflow
log: (i) the overall frequency of taskA (notation#A),
(ii) the frequency of taskA directly preceded by another
taskB (notation#B < A), (iii) the frequency ofA
directly followed by another taskB (notation#A >
B), (iv) a local metric that indicates the strength of the
dependency relation between taskA and another task
B (notation$A →L B) and finally (v) a more global
metric that indicates the strength of the dependency
relation (notation$A → B).

Metric (i) through (iii) seems clear without extra
explanation. The definition of the local metric (iv)
is as follows: $A →L B = (#A > B − #B >
A)/(#A > B + #B > A + 1). Remark that in
this definition only local information is used (i.e. the
A > B relation). The effect of this definition is that
if for instance event A is 5 times directly followed by
event B but the other way around never accurse, the
value of$A →L B = 5/6 = 0.833 indicating that
we are not completely sure of the dependency relation
(noise can have effected the result). However if A is
50 times followed by B but the other way around never
occurs, the value of$A →L B = 50/51 = 0.980
indication that we are pretty sure of the dependency
relation. Even if A is 50 times directly followed by B
and noise has effected that B is ones followed by A the
value of$A →L B = 49/52 = 0.942.

The last metric, metric (v), is more global than the
other measurements because not only direct following
events are involved. The underlying intuition is as fol-
lows. If it is always the case that, when taskA occurs,
shortly later taskB also occurs, then it is plausible that
taskA causes the occurrence of taskB. On the other
hand, if taskB occurs (shortly) before taskA, it is im-
plausible that taskA is the cause of taskB. Bellow we
define the formalization of this intuition. If, in an event
stream, taskA occurs before taskB andn is the number
of intermediary events between them, the$A → B-
dependency counter is incremented with a factor(δ)n.
δ is a dependency fall factor (δ in [0.0 . . .1.0]). In our
experimentsδ is set to 0.8. The effect is that the contri-
bution to the dependency metric is maximal 1 (if task
B appears directly after task A thenn = 0) and de-
creases if the distance increases. The process of look-
ing forward from taskA to the occurrence of taskB
stops the first next occurrence of taskA or taskB. The
other way around, if taskB occurs before taskA and
n is again the number of intermediary events between
them, the$A → B-dependency counter is decreased
with a factor(δ)n. After processing the whole work-
flow log theA → B-dependency counter is divided by
the minimum overall frequency of taskA andB (min
(#A, #B)).

Given the process model of Fig. 1 a workflow log
with 1000 event sequences (23573 events) is generated.
As an example, Table 1 shows the above-defined met-
rics for taskT 6. Notice that the taskT 6 belongs to
one of two concurrent event streams (the AND-split in
T 2). It can be seen from Table 1 that (i)T 6 is never
directly preceded byT 10 (#B < A = 0), (ii) T 6 is
often directly followed byT 10 (#A > B = 581), and
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Table 1
D/F-table for event T6 (i.e.,A = T6).

B #B #B < A #A > B $A →L B $A → B

T10 1035 0 581 0.998 0.803
T5 3949 80 168 0.353 0.267
T11 1994 0 0 0 0.193
T13 1000 0 0 0 0.162
T9 1955 50 46 −0.041 0.161
T8 1994 68 31 −0.370 0.119
T3 3949 146 209 0.177 0.019
T6 1035 0 0 0 0.000
T7 959 0 0 0 −0.011
T12 994 0 0 0 −0.093
T1 1000 0 0 0 −0.246
T2 1994 0 0 0 −0.487
T4 1994 691 0 −0.999 −0.825

T9 T9

T5

B2

B1

A2

A1

Fig. 3. An overview of the types of dependency relations not recognized by the first version of mining rule 1: (i) complex interconnected
structures, (ii) recursion, and (iii) short loops.

(iii) both dependency measurements fromT 6 to T 10
are relatively high (0.998 and0.803). In the next sec-
tion, we will use the D/F-table in combination with a
relatively simple heuristic to construct a D/F-graph.

4.2. Induction of dependency/frequency graphs

In the previous section,we observed that the informa-
tion in the T6-D/F-table (Table 1) strongly suggests that
taskT 10 depends on taskT 6 because the dependency
measurements betweenT 6 andT 10 are high, andT 6 is
never directly preceded byT 10 and frequently directly
followed byT 10. In earlier approaches, cf. [25,26], we
developed heuristic rules in line with this observation.
As an illustration, consider the following rule:

IF ((#A > B > σ) AND (#B < A � σ)
AND ($A →L B � N1)
AND ($A → B � N2))

THEN A → B
A → B is the dependency relation (B depends (di-

rectly) on A) as introduced before. The four con-
ditions demand that specific values of the D/F graph
(#A > B, #B < A, $A →L B, $A → B) are higher
or lower than a certain threshold value(σ, N1, N2). In
the perfect situation where we know that we have a

workflow log that is totally free of noise, every task-
pattern-occurrence is informative and for instance, the
value ofσ can be set to zero. However, if it is not clear
if a workflow log is noise free, we must protect the in-
duction process against inferences based on noise; only
task-pattern-occurrences above a threshold frequency
are reliable enough for our induction process. The sit-
uation for theN1 andN2 parameters is less straight-
forward. Especially theN2 parameter appears sensi-
tive for parallelism in the workflow. The high number
of parameters and the sensitivity of these parameters
for noise are clear disadvantages of this kind of heuris-
tic rules. In [21] we have attempted to use machine-
learning techniques for threshold tuning.

However, it seems not necessary to formulate a rule
that for each pair of events A and B takes the decision
if they are in the dependency relation or not. Because
we know that each not-first event must have at least
one cause event, and each not-last event must have at
least one dependent event. Using this trivial informa-
tion in our heuristic rule we can limit the search for
“the best” candidate. This helps us enormously in find-
ing dependency relations. The above-formulated idea
is implemented in the following first version of our
heuristic rule. But first the definition of thedependency
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Fig. 4. A screenshot of Little Thumb.

score (DS) between two events sayX andY (notation
DS(X, Y )), is given because we will use the DS in the
formulation of the heuristic rule.

– SupposeX andY are events, then the dependency
scoreDS(X, Y ) = (($X →L Y )2 + ($X →
Y )2)/2.

– First (temporally) version of mining rule 1. Given
a task A:
A → X if and only if X is the event for which
DS(A,X) is maximal,
Y → A if and only if Y is the event for which
DS(Y,A) is maximal.

Remark that the new heuristic rule does not contain
any parameter. Applying this simple heuristic on the
D/F-table (Table 1 ) results in the D/F-graph of Fig. 2.
If we compare the D/F-graph of Fig. 2 with the Petri net
of Fig. 1 (the Petri-net used for generating the workflow
log and D/F-table in Table 1), it can be seen that all
the connections between the nodes are in accordance
with underlying workflow model (all connections are
correct and there are no missing connections). For each
arc the dependency score (DS) is given and for each
task the number of event occurrences in the log.

However, the heuristic rule formulated above will not
recognize all possible dependency relations. Figure 3
gives an overview of the types of relations that will not
be recognized: (i) some complex connection structures,
(ii) recursion, and (iii) short loops. Below we discuss
these relations and we try to improve our heuristic rules.

Applying the first version of mining rule 1 on the
first type of structure of Fig. 3 can result in missing
dependency relations. For instance if the result of ap-
plying the rule on A1 givesA1 → B1, on A2 gives
A2 → B2, onB1 gives againA1 → B1, and finally
on B2 gives againA2 → B2, then the dependency
relationA2 → B1 will not be recognized. In line with
these observations, the first version of our mining rule
1 is updated.

– Mining rule 1 (definite version). Given a taskA
SupposeX is the event for whichDS(A, X) = M
is maximal. ThenA → Y if and only if
DS(A, Y ) < 0.95 ∗ M .
SupposeX is the event for whichDS(X, A) = M
is maximal. ThenY → A if and only if
DS(Y, A) < 0.95 ∗ M .

Remark that again we have introduced a threshold
value of 0.95. However, it is only one parameter, and
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the parameter seems robust for noise and concurrent
processes. For this reason parameter tuning appears
not necessary; the default value of 0.95 is appropriate.

The remaining two type of relations of Fig. 3 not
covered by rule (1) are recursion (ii) and short loops
(iii). Recursion in for instance eventT 9 will result in
patterns likeT 5, T 4, T 9, T 9, T 6, T 9, T 8. Recursion
can be recognized by observing a high frequency of
#T 9 > T 9 in combination with a DS(T9,T9) value of
about zero (normally DS(A,A) is only near to zero if
#A > A is also near to zero).

A short loop from for instanceT 9 toT 5 will result in
patterns likeT 5, T 4, T 9, T 5, T 9, T 6, T 5, T 8. At first
sight short loops can be recognized by observing that
both a high and exactly equal frequency ofT 5 > T 9
andT 9 < T 5 in combination with dependency mea-
surementsDS(T 5, T 9) andDS(T 9, T 5) both near to
zero. However, the same behavior can be observed
whenT 5 andT 9 both depend on eventX with X is an
AND-split.

In line with these observations, heuristic rule 1 is
extended with two simple heuristic rules for recursion
(rule 2) and for short loops (rule 3). Details are omitted.

4.3. Generating WF-nets from D/F-graphs

By applying the heuristic rules of subsection 4.1 on a
workflow log it appears relatively simple to find the cor-
responding D/F-graphs. But the types of the splits and
joins are not yet represented in the D/F-graph. How-
ever (i) information in the D/F-table, and (ii) the fre-
quency of the nodes in the D/F-graph contain useful
information to indicate the type of a join or a split.

For instance, if we have to detect the type of a split
fromA to B AND/OR C, we can look in the D/F-table
to the values ofB > C andB < C. If A is an AND-
split, then patternB, C and the patternC, B can both
appear, and we expect a positive value for bothB > C
andC > B (or in other words theB||C-relation holds).
If it is an OR-split, the patternsB,C andC, B will not
appear.

As an example of (ii) we look to the frequency of the
nodes in the D/F-graph of Fig. 2.T 2 is an AND-split
(because#T 4 = #T 2 and there are no other incoming
arcs forT 4. T 5 is an OR-split (because#T 5 = #T 8+
#T 9), and analogueT 4 andT 11. The join in nodeT 11
is a little bit more complex: it appears a combination
of a OR-join betweenT 7 andT 10, combined with a
AND-join with T 8 (#T 7 + #T 10 = #T 8 = #T 11).

In our mining tool the second observation (a fre-
quency check) is used for the validation of the induced

workflow model (see Paragraph 5), a heuristic based
on the first observation is used to determine the kinds
of splits and joins. Remark that for two events A and
B exactly one of the following possible relations holds:
A → B, B → A, A#B, or A||B. Based on the D/F-
graph we already know ifA → B or B → A holds. If
that is not the case we only have to take the decision
if A#B, or A||B holds. If this decision is taken, we
can apply theα-algorithm of our formal approach [5]
to translate this information into a WF-net. Using the
α-algorithm in this way we were able to reconstruct the
types of the splits and joins appearing in our working
example and to reconstruct the complete underlying
WF-net (exactly the same one as the WF-net of Fig. 1).
In the next section, (Section 5) we introduce the work-
flow mining tool Little Thumb. The tool is based on the
workflow mining heuristics as presented in this section.
In Section 6 we will report our experimental results of
applying the above-definedworkflow mining heuristics
to other workflow logs, with and without noise.

5. Little thumb

Little Thumb1 is a tool that attempts to induce a
workflow model from a workflow log. The workflow
log may contain errors (noise) and can be incomplete.
In Fig. 4 a screenshot of Little Thumb is given. In
this example session, Little Thumb is used to analyze a
workflow log. For this example we use a log with infor-
mation about the processing of complaints. However,
5% of the cases in the workflow log contain errors (i.e.
part of the event registration is missing or two events
are interchanged). In the left upper corner, we see the
D/F-table as discussed in Section 4.2.

In the right side of the screenshot we see 5 tabs;
(i) Generate WF-log, (ii) Select events, (iii) Load WF-
log, (iv) Analyse WF-log, and finally (v) Check WF-
net. With the Generate-WF-log tab (i) it is possible
to load a WF-net and to generate workflow logs, with

1For two reasons we chose the name Little Thumb for our process
mining tool: (i) it is based on heuristic rules also know as “rules
of thumb”, and (ii) the analogy with the fairy tale. In the fairy tale
Little Thumb and his brothers are left in the forest by their parents.
Fortunately, Little Thumb left a trail of white pebbles to find his way
back. The second time, Little Thumb uses breadcrumbs instead of
white pebbles to mark the way back. Unfortunately, the breadcrumbs
are partly eaten away by the birds, thus making it impossible to find
the way back. The goal of the tool Little Thumb is to deal with
situations where the information in the log is incomplete and partly
incorrect. This is analogous to finding the way back home on the
basis of few breadcrumbs being left by the birds.
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Fig. 5. The resulting D/F-graph of Little Thumb.

and without noise. In an experimental setting, these
workflow-logs can be used as mining material to test
the mining performance of our tool. With the Select-
events tab (ii) we can concentrate our mining process
on the most frequent events and neglect low frequent
events. The function of Load-WF-log tab (iii) is triv-
ial. The Analyze-WF-log function (tab (iv)) is of more
importance. Below we will first illustrate the Analyse-
WF-log-function followed by a short illustration of the
Check-WF-net function (tab (v)).

We try to follow Little Thumb during his attempt to
analyze the loaded workflow log. The same steps as
mentioned in Paragraph 4 can be distinguished. Step
(i) the construction of a dependency/frequency table
(D/F-table). Step (ii) the induction of a D/F-graph out
of a D/F-table. Step (iii) the induction of the AND/OR
information for the different splits and joins and the
reconstruction of the WF-net out of the D/F-table and
the D/F graph.

The first step is already executed (see the D/F-table
in the screenshot of Fig. 4). The ‘evaluate’ event (fre-
quency 989) is in focus. The ‘evaluate’-event is 356
times followed by the ‘processingrequired’-event, and
385 times by the ‘noprocessing’-event. It easily to see
that the workflow log contains noise: the 2 value for
the#A < B-counter for the ‘no-processing’-event is
caused by an error in the log (i.e. an unusual order).
The result of step (ii) the induction of a D/F-graph out
of a D/F-table will result in extra information in the
D/F-table: the extra information indicates if events are
in the→, #, or || relation. With the Show-D/F-graph
option, it is possible to display the D/F-graph as illus-
trated in Fig. 5. For each connection the dependency
score (DS) is given and for each event the number of

occurrences in the log. It is also possible to show the
$A →L B-value or the$A → B-value for each con-
nection. The D/F-graph can be used for a first vali-
dation with a domain expert and possible changes can
be easily implemented by changing the values in the
extended D/F-table.

The types of the splits and joins are not yet repre-
sented in the D/F-graph. In Step (iii) we use the infor-
mation in the extended D/F-table to indicate the type of
a joins and splits. Little Thumb will use this informa-
tion for the induction of the complete WF-net (repre-
sented as a Petri-net). In the WF-net we can see that the
split from ‘register’ to ‘sendquest’ and ‘evaluate’ is an
AND-split. Again it is possible to evaluate the mined
WF-net with a domain expert how knows the process
that we try to model very well; possible changes can
easily be implemented by editing the values in the ex-
tended D/F-table.

Finally we will shortly discuss the last tab (v); the
so-called Check WF-net tab. This tab gives us the pos-
sibility to validate the WF-net. During the first check,
we present all the traces in the workflow log to the WF-
net; the WF-net checks if the trace can be parsed by
the WF-net. If not, the position in the trace were the
parsing stops is shown to the user. Traces in the work-
flow log with noise will cause problems during tracing.
However, if a high number of traces run in problems
around the same event, this is a indication that there is
a problem in the WF-net around that event. In the sec-
ond check, we test out if the frequency information of
the events (#A) is in accordance with the structure of
the mined WF-net. For instance, the frequency infor-
mation around ‘evaluate’ (989), ‘processingrequired’
(467) and ‘noprocessing’ (525) points out a OR-split.
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Fig. 6. The WF-net as induced by Little Thumb.

Small differences can be explained by noise, clear dif-
ferences indicate an error in the mined WF-net. This
concludes our introduction to Little Thumb.

6. Experiments

6.1. First experiments

To test our approach we use the Petri-net represen-
tations of six different free-choice workflow models.
The complexity of these models range from compara-
ble with the complexity of our working model of Fig. 1
(13 tasks) to models with 16 tasks. All models contain
concurrent processes and loops. For each model we
generated three random workflow logs with 1000 event
sequences: (i) a workflow log without noise, (ii) one
with 5% noise, and (iii) a log with 10% noise.

To incorporate noise in our workflow logs we define
four different types of noise generating operations: (i)
delete the head of a event sequence, (ii) delete the tail
of a sequence, (iii) delete a part of the body, and finally
(iv) interchange two random chosen events. During
the deletion-operations at least one event, and no more
than one third of the sequence is deleted. The first step
in generating a workflow log with 5% noise is to ran-
domly generate a workflow log for the workflow model
without errors. The next step is the random selection
of 5% of the original event sequences and applying one
of the four above described noise generating operations
on it (each noise generation operation with an equal
probability of 1/4). Table 2 is the D/F-table for event
T6 of the WF-net of Fig. 1 but now with some noise
added. Comparing this table with Table 1 shows small
differences between the values of the tables.

Applying the above method on the six noise free
workflow logs results in six perfect D/F-graphs (i.e. all
the connections are correct and there are no missing
connections), and exact copies of the underlying WF-
nets. If we add 5% or 10% noise to the workflow logs,
the resulting D/F-graphs and WF-nets are still perfect.

6.2. Second experiments

In a second series of experiments, we try to use work-
flow logs that resemble real workflows. We observe
that at least four elements strongly influence the behav-
ior of a WF-net and/or the workflow mining process:

– The number of event types (i.e. tasks) in the WF-
net: four different workflow models are used with
12, 22, 32 and 42 event types.

– The amount of material in the workflow log: we
generated logs with 100, 200, 600, 1000, 1400,
and 2000 trace lines.

– The amount of noise: we generated workflow log
without noise, with 5% noise, 10% noise, 20%
noise, and 50% noise.

– The unbalance refers to the (relative) probability
that enabled event will fire. We consider four dif-
ferent settings: all events have a equal probability
to fire, the probabilities vary a little bit (i.e. be-
tween [0.9. . .1.1]), a little bit more (i.e. between
[0.5. . .1.5]), and the probability vary strongly (i.e.
between [0.1. . .1.9]). If for instance task X is an
OR-split to A and B and A has a probability or
weight of 0.2 and B as weight 1.8, about in 10%
of the cases A is taken and in 90% of the cases B
is taken. However, if task X is an AND-split to A
and B, then both A and B will be executed but in
10% of the cases A precedes B and in 90% of the
cases B precedes A. This kind of unbalance can
influence the behavior of WF-net and the material
in the workflow log dramatically.

We generated 480 different workflow logs by vary-
ing each of the above enumerated elements (i.e.4 ×
6 × 5 × 4 = 480). Based on the experiments it was
possible to conclude that under all circumstances most
dependency relations, the type of splits and the type of
joins are correctly found. The mining technique ap-
pears especially robust for the number of trace lines and
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Table 2
D/F-table for eventT6 (i.e.,A = T6) but now from a workflow log
with noise

B #B #B < A #A > B $A →L B $A → B

T10 1004 2 556 0.991 0.790
T5 3817 77 162 0.354 0.267
T11 1901 0 2 0.667 0.182
T13 923 0 0 0.000 0.161
T9 1902 50 46 −0.041 0.161
T8 1908 66 26 −0.430 0.108
T3 3814 141 203 0.180 0.030
T6 1007 0 0 0.000 0.000
T7 920 0 0 0.000 −0.011
T12 972 0 0 0.000 −0.098
T1 926 3 2 −0.167 −0.254
T2 1904 0 1 0.500 −0.473
T4 1921 664 4 −0.987 −0.808

the amount of unbalance. Only if the amount of noise
is increased to 50%, the mining technique runs into
serious problems. A lower unbalance or the maximum
number of trace lines (2000) did not help.

In about a quarter of the cases, exactly the right
WF-net was found. In about 75% of the experiments,
the check facility of Little Thumb found one or two
errors in combination with an indication where in the
WF-net the error seems to appear. We observed that
most errors have to do with complex interconnected
structures (Fig. 3) in combination with short loops. An
improvement of the heuristic rules for short loops seems
necessary.

7. Conclusion

In this paper, we (i) introduced the context of work-
flow processes and process mining, (ii) some prelimi-
naries including a modeling language for workflow pro-
cesses, and (iii) a definition of a workflow log. Here-
after, we presented the details of the three steps of our
process mining technique: Step (i) the construction of
the D/F-table, Step (ii) the induction of a D/F-graph out
of a D/F-table, and Step (iii) the reconstruction of the
WF-net out of the D/F-table and the D/F graph.

After this, we introduced Little Thumb, a workflow
mining tool based on our process mining techniques.

In Section 6, we describe two series of experiments.
In the first experiment, we applied our technique on
six different workflow models with about 15 tasks.
All models contain concurrent processes and loops.
For each workflow model, we generated three random
workflow logs with 1000 event sequences: (i) without
noise, (ii) with 5% noise, and (iii) with 10% noise. Us-
ing the proposed technique, we were able to reconstruct

the correct D/F-graphs and WF-nets. The experimental
results on the workflow logs with noise indicate that
our technique seems robust in case of noise.

In the second experiment, not only the amount of
noise was varied, but also the amount of material in
the log, the complexity of the WF-net (with 12, 22, 32
and 42 event types), and amount of unbalance in the
WF-net. Again, the experimental results indicate that
our technique is robust against these factors. However,
there are still problems with our mining techniques;
errors are made around complex interconnected struc-
tures in combination with short loops. An improvement
of the heuristic rules for short loops seems necessary.

Notwithstanding the reported results and improve-
ments, there is a lot of future work to do. More ex-
perimental work must be done especially on real work-
flow logs. In [3] we present a common XML-format
for workflow logs. Experience shows that it is fairly
simple to extract information out of enterprise-specific
information systems and translate this to XML format.
Little Thumb can read the XML format. However, Lit-
tle Thumb is only an experimental tool; if our mining
technique becomes stable, we can put more effort in de-
veloping a really interactive, and user friendly mining
tool.

Finally, we will extend our mining technique in order
to enlarge the set of underlying WF-nets that can be
successfully mined.
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